Hazard/Risk Assessment APPLICATION OF ECOSYSTEM-SCALE FATE AND BIOACCUMULATION MODELS TO PREDICT FISH MERCURY RESPONSE TIMES TO CHANGES IN ATMOSPHERIC DEPOSITION

نویسندگان

  • CHRISTOPHER D. KNIGHTES
  • ELSIE M. SUNDERLAND
  • M. CRAIG BARBER
  • JOHN M. JOHNSTON
  • ROBERT B. AMBROSE
چکیده

Management strategies for controlling anthropogenic mercury emissions require understanding how ecosystems will respond to changes in atmospheric mercury deposition. Process-based mathematical models are valuable tools for informing such decisions, because measurement data often are sparse and cannot be extrapolated to investigate the environmental impacts of different policy options. Here, we bring together previously developed and evaluated modeling frameworks for watersheds, water bodies, and food web bioaccumulation of mercury. We use these models to investigate the timescales required for mercury levels in predatory fish to change in response to altered mercury inputs. We model declines in water, sediment, and fish mercury concentrations across five ecosystems spanning a range of physical and biological conditions, including a farm pond, a seepage lake, a stratified lake, a drainage lake, and a coastal plain river. Results illustrate that temporal lags are longest for watersheddominated systems (like the coastal plain river) and shortest for shallow water bodies (like the seepage lake) that receive most of their mercury from deposition directly to the water surface. All ecosystems showed responses in two phases: A relatively rapid initial decline in mercury concentrations (20–60% of steady-state values) over one to three decades, followed by a slower descent lasting for decades to centuries. Response times are variable across ecosystem types and are highly affected by sediment burial rates and active layer depths in systems not dominated by watershed inputs. Additional research concerning watershed processes driving mercury dynamics and empirical data regarding sediment dynamics in freshwater bodies are critical for improving the predictive capability of process-based mercury models used to inform regulatory decisions. Keywords—Models Response times Ecosystem Mercury Fish

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of ecosystem-scale fate and bioaccumulation models to predict fish mercury response times to changes in atmospheric deposition.

Management strategies for controlling anthropogenic mercury emissions require understanding how ecosystems will respond to changes in atmospheric mercury deposition. Process-based mathematical models are valuable tools for informing such decisions, because measurement data often are sparse and cannot be extrapolated to investigate the environmental impacts of different policy options. Here, we ...

متن کامل

A screening model analysis of mercury sources, fate and bioaccumulation in the Gulf of Mexico.

A mass balance model of mercury (Hg) cycling and bioaccumulation was applied to the Gulf of Mexico (Gulf), coupled with outputs from hydrodynamic and atmospheric Hg deposition models. The dominant overall source of Hg to the Gulf is the Atlantic Ocean. Gulf waters do not mix fully however, resulting in predicted spatial differences in the relative importance of external Hg sources to Hg levels ...

متن کامل

Terrestrial discharges mediate trophic shifts and enhance methylmercury accumulation in estuarine biota

The input of mercury (Hg) to ecosystems is estimated to have increased two- to fivefold during the industrial era, and Hg accumulates in aquatic biota as neurotoxic methylmercury (MeHg). Escalating anthropogenic land use and climate change are expected to alter the input rates of terrestrial natural organic matter (NOM) and nutrients to aquatic ecosystems. For example, climate change has been p...

متن کامل

Sources of Mercury Exposure for U.S. Seafood Consumers: Implications for Policy

BACKGROUND Recent policies attempting to reduce adverse effects of methylmercury exposure from fish consumption in the United States have targeted reductions in anthropogenic emissions from U.S. sources. OBJECTIVES To analyze the prospects for future North American and international emissions controls, we assessed the potential contributions of anthropogenic, historical, and natural mercury t...

متن کامل

Fate of mercury in the Arctic (FOMA)

This report is the final reporting of the project FONA, funded by the Danish Environmental Protection Agency with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region. The aim of the project is to study the intercompartment mercury transport chain in the arctic area. From atmospheric deposition of mercury on sea surfaces to uptake in marine organisms, bio-accumulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008